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Abstract. Linear programming has proved to be one of the most pow-
erful and widely used tools in algorithm design and especially in the
design of approximation algorithms. It has proved its expressive power
by modeling diverse types of problems in planning, routing, scheduling,
assignment, and design. However there are problems that seem to be very
hard for linear programming. More specifically, the capacitated facility
location problem (Cfl) is an example of an important and well-studied
problem for which, while it can be approximated within a constant fac-
tor using local search, it is not known to admit efficient relaxation based
approximations.

In this thesis we take the direction of exploring the limitation of lin-
ear programming. Most of the thesis’s results are concerned with linear
programming approximability of the capacitated versions of the metric
facility location problem such as the capacitated facility location (Cfl).
We give impossibility results in the hierarchy and in the extended for-
mulations models and we also study another, independent family of re-
laxations which we call proper.

We show that the relaxations obtained from the natural LP at Ω(n)
levels of the semidefinite Lovász-Schrijver hierarchy for mixed programs,
and of the Sherali-Adams hierarchy, the integrality gap is Ω(n), where n
is the number of facilities. Our bounds are asymptotically tight. Then we
prove that the standard Cfl relaxation enriched with the submodular
inequalities of [1] has also an Ω(n) gap and thus not bounded by any
constant. This disproves a long-standing conjecture of [24].

We propose a framework for proving lower bounds on the size of ex-
tended formulations. We do so by introducing specific types of extended
relaxations that we call product and distributional relaxations. Then we
show that for every approximate extended formulation of a polytope P,
there is a product or distributional relaxation that has the same size and
is at least as strong. We provide a methodology for proving lower bounds
on the size of approximate product and distributional relaxations and,
as an application of our method, we show for Cfl an exponential lower
bound on the size of a restricted type of extended formulations.
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1 Dissertation Summary

This thesis is naturally divided in three parts regarding the subfield in which
the corresponding results reside: One part regarding the quality of solution for
the Cfl problem obtained by capitalizing on LP hierarchies, a second part, and
perhaps the most important contribution of the thesis, regarding the develop-
ment of a methodology for lower bounding the size of Extended Formulations
and applications to the Cfl problem, and one smaller part regarding the charac-
terization of the strength of generalized configuration linear programs for Cfl.
In this overview we first define Cfl and give a detailed backround, and then
we give an introduction to each topic corresponding to each part: we mention
relevant work and we briefly present the exact contribution and results obtained
by the research conducted in the context of this thesis.

1.1 Approximating Facility Location

Facility location is one of the most well-studied families of models in combi-
natorial optimization. In the uncapacitated facility location problem (Ufl) we
are given a set F of facilities and a set C of clients. We may open facility i by
paying its opening cost fi and we may assign client j to facility i by paying the
connection cost cij . We are asked to open a subset F ′ ⊆ F of the facilities and
assign each client to an open facility. The goal is to minimize the total opening
and connection cost. The approximability of Ufl was settled by an O(log |C|)-
approximation [15], which via a reduction from Set Cover is asymptotically best
possible, unless P = NP [28]. In metric Ufl the service costs satisfy the following
variant of the triangle inequality: cij ≤ cij′ + ci′j′ + ci′j for any i, i′ ∈ F and
j, j′ ∈ C. This natural special case of Ufl is approximable within a constant-
factor, and many improved results have been published over the years. In those,
LP-based methods, such as filtering, randomized rounding and the primal-dual
method have been particularly prominent (see, e.g., [34]). After a long series of
papers the currently best approximation ratio for metric Ufl is 1.488 [25], while
the best known lower bound is 1.463, unless P = NP ([33]).

Cfl is the generalization of metric Ufl where every facility i has a capac-
ity ui that specifies the maximum number of clients that may be assigned to
i. In uniform Cfl all facilities have the same capacity U. Finding an approx-
imation algorithm for Cfl that uses a linear programming lower bound was
until recently a notorious open problem. The natural LP relaxations have an
unbounded integrality gap and up to the recent breakthrough of [5], the only
known O(1)-approximation algorithms were based on local search, with the cur-
rently best ratios being 5 [8] for the non-uniform and 3 [2] for the uniform case
respectively. In the special case where all facility costs are equal, Cfl admits an
LP-based 5-approximation [24]. Williamson and Shmoys [34], stated the design
of a relaxation-based algorithm for Cfl as one of the top 10 open problems in
approximation algorithms. Very recently, An et al. [5] gave a polynomial-time
LP-based 288-approximation algorithm, thus answering the open question of
[34]. The LP in [5] has exponential size and is not known to be separable in



polynomial time. Therefore the question on the existence of an efficient, com-
pact, linear relaxation for Cfl remains open. The series of our results regarding
the LP-(in)approximability of Cfl can be taken as very strong evidence that
such a relaxation does not exists.

The Lower Bound Facility Location (Lbfl) is in a sense the opposite problem
to Cfl. In an Lbfl instance every facility i comes with a lower bound bi which
is the minimum number of clients that must be assigned to i if we open it. In
uniform Lbfl all the lower bounds have the same value B. Lbfl is even less
well-understood than Cfl. The first approximation algorithm for the uniform
case had a performance guarantee of 448 [32], which has been improved to 82.6
[3]. Both use local search. Interestingly, the Lbfl algorithms from [32, 3] both
use a Cfl algorithm on a suitable instance as a subroutine.

1.2 Lift-and-Project methods and the resulting Hierarchies as
model of LP computation

A lot of effort has been devoted to understanding the quality of relaxations of 0-1
polytopes obtained by an iterative lift-and-project procedure. Such procedures
define hierarchies of successively stronger relaxations, where valid inequalities
are added at each level. At level at most d, where d is the number of variables,
all valid inequalities have been added and thus the integer polytope is expressed.
Relevant methods include those developed by Balas et al. [7], Lovász and Schri-
jver [27] (for linear and semidefinite programs), Sherali and Adams [30], Lasserre
[22] (for semidefinite programs). See [23] for a comparative discussion. The sem-
inal work of Arora et al. [6], studied integrality gaps of families of relaxations for
Vertex Cover, including relaxations in the Lovász-Schrijver (LS) hierarchy. This
paper introduced the use of hierarchies as a restricted model of computation for
obtaining LP-based hardness of approximation results.

We give impossibility results on arguably the most promising directions for
obtaining efficient linear strengthened relaxations for Cfl using hierarchies and,
in doing so, we answer open problems from the literature.

Our first result of this part of our contribution is that there is an instance
with Θ(n) facilities and Θ(n4) clients on which the relaxations produced at
Ω(n) levels when the LS procedure is applied on the natural Cfl LP have an
integrality gap of Ω(n). The natural LP has a facility opening variable yi, for
every i ∈ F, and an assignment variable xij , for every i ∈ F, and client j ∈ C.
We also extend the former result to the mixed LS+ hierarchy. This procedure is
the stronger version of LS where one additionally requires that every protection
matrix is positive semidefinite. The mixed LS+ procedure for a mixed integer
program is the version of LS+ where one lifts only the 0-1 variables and requires
that the resulting protection matrix is positive semidefinite (see, [7], [12]). We
show that the Ω(n) gap applies for Ω(n) rounds of mixed LS+ as well.

We then show that the LPs obtained from the natural relaxation for Cfl at
Ω(n) levels of the stronger SA hierarchy have a gap of Ω(n) on the same family
of instances used for the LS result, with |F | = Θ(n) and |C| = Θ(n4), giving the
second contribution of this part. This result answers the questions of [26] and [4]



stated above as far as the natural LP is concerned. Our bound is asymptotically
tight since the relaxation obtained at every level of the SA hierarchy is at least
as strong as the one obtained at the same level of LS . We use a variation of the
local-to-global method which was implicit in [6] for local-constraint relaxations
and was then extended to the SA hierarchy in [13]. From a qualitative aspect,
we give the first, to our knowledge, hierarchy bounds for a relaxation where
variables have more than one type of semantics, namely the facility opening and
the client assignment type. Compare this, for example, with the Knapsack and
Max Cut LPs that contain each one type of variable.

Our third contribution in this part is that the submodular inequalities intro-
duced in [1] for Cfl fail to reduce the gap of the classic relaxation to constant.
These constraints generalize the flow-cover inequalities for Cfl. Thus we dis-
prove the long-standing conjecture of [24] that the addition of the latter to
the classic LP suffices for a constant integrality gap. Although this is not a re-
sult that concerns linear programming hierarchies, we included its presentation
in that part of the thesis because the methodology we use is inspired by the
local-to-global method and thus our proof deviates from standard integrality
gap constructions. In fact we take the idea of fooling local constraints a little
further: the bad solution fools every inequality π because its part that is visi-
ble to π, i.e., the variables in the support of π, can be extended to a solution
that is a convex combination of feasible integer solutions for that instance or it
is a convex combination of feasible solutions to another instance for which the
same inequality is valid. Our proof relies on simple structural properties of the
inequalities, disregarding the exact coefficients of the variables.

1.3 Extended Formulations: the currently most general mode of
LP computation

In the past few years there has been an increasing interest in exposing the lim-
itations of compact LP formulations for combinatorial optimization problems.
The goal is to show a lower bound on the size of extended formulations (EFs) for
a particular problem. Extended formulations add extra variables to the natural
problem space; the increase in dimension may yield a smaller number of facets.
The minimum size over all extended formulations is the extension complexity of
the corresponding polytope. A superpolynomial lower bound on the extension
complexity is of intrinsic interest in both polyhedral combinatorics and com-
binatorial optimization and implies that there is no polynomial-time algorithm
relying purely on the solution of a compact linear program.

In the seminal paper of Yannakakis [35] the problem of lower bounding the
size of extended formulations was considered for the first time: exponential lower
bounds were proved for symmetric extended formulations of the matching and
TSP polytopes. Yannakakis [35] identified also a crucial combinatorial parame-
ter, the nonnegative rank of the slack matrix of the underlying polytope P, and
he showed that it equals the extension complexity of P. A strong connection of
the extension complexity of a polytope to communication complexity was made
in [35], by showing that the nonnegative rank of the slack matrix is at least



the size of its minimum rectangle cover. That connection has been exploited in
several results on the extension complexity of polytopes.

Fiorini et al. [14] lifted the symmetry condition on the result of [35] regard-
ing the TSP polytope, giving the first example of a polytope with exponential
extension complexity and thus answering a long-standing open problem of [35].
Recently, Rothvoß [29] removed the symmetry condition for the matching poly-
tope as well, answering the second long-standing open question of [35]. This was
done by a breakthrough in bounding a refined version of the rectangle covering
number.

A more general question is that of the size of approximate extended formu-
lations. This problem was first considered in [10] where the methodology of [14]
was extended to approximate formulations and an exponential bound for the
linear encoding of the n1/2−ε-approximate clique problem was given.

In [11] it was proved that in terms of approximating maximum constraint
satisfaction problems (CSPs), LPs of size O(nk) are exactly as powerful as
O(k)-level relaxations in the Sherali-Adams hierarchy. Their proof differs from
previous work in showing that polynomials of low degree can approximate the
functional version of the factorization theorem of [35].

Our contribution on Extended Formulations In the relevant part of the
thesis we propose a new intuitive, geometric approach for proving lower bounds
on the size of approximate extended formulations that relies on an insight on the
expressive strength of “strong” sets of variables and encodings. Our contribution
is summarized by the following.

First we introduce two very strong families of extended formulations (or relax-
ations) of a given polytope which we call product formulations and distributional
formulations. The product relaxations are inspired by the study of the Sherali-
Adams hierarchy – the variables have the intuitive meaning of corresponding
to products over sets of variables from the original space. The distributional
are intended to encode the problem in such a way that the feasible region is
a straightforward distribution of (convex combination of) feasible integer solu-
tions. (See Section 2 for the necessary definitions).

We prove in Theorem 1 that for any ρ-approximate extended formulation of a
0-1 polytope there is a product (distributional) formulation of the same size that
is at least as strong. Theorem 1 reduces lower bounding the size of an extended
formulation, which uses some unknown space and encoding, of a polytope P,
to lower bounding the size of product (distributional) formulations of P. In the
product (distributional) space we have the concrete advantage of knowing the
section of the target relaxation. We extend the definition of product relaxations
and our methodology to mixed integer sets. However in this case we are able to
show that mixed product relaxations are at least as powerful as a special family
of extended formulations.

Then we propose a methodology for proving lower bounds for relaxations
for which the encoding of solutions is known, and in particular for product
(distributional) formulations. The method is the following: first we define a set



of vectors in the space of the relaxation such that for each one of those vectors
there is an admissible objective function witnessing an integrality gap of ρ. We
call that set of vectors the core. Then we show that, for any partition of the core
into fewer than κ parts, there must be some part containing a set of conflicting
vectors. A set of infeasible vectors is conflicting if its convex hull has nonempty
intersection with the convex hull of {zx | x ∈ P (x) ∩ {0, 1}n}, which is always
included in the feasible region of a product relaxation – here zx is the encoding
of feasible solution x to the variables of product formulations. Thus, we get that
at least κ inequalities are needed to separate the members of the core from the
feasible region and so κ is a lower bound on the size of any ρ-approximate product
formulation. By considering the hypergraph whose set of vertices corresponds
to the aforementioned set of vectors and whose set of hyperedges corresponds
to the sets of conflicting vectors, the chromatic number of the hypergraph is a
lower bound on the size of every ρ-approximate extended formulation. Moreover,
there is always a core such that the chromatic number of the resulting, possibly
infinite, hypergraph equals the extension complexity of the polytope at hand.
Thus we give a characterization of extension complexity which can be seen as
an alternative to the nonnegative rank of the slack matrix.

We exhibit a concrete application of our methodology by proving an exponen-
tial lower bound on the size of any O(N)-approximate mixed product relaxation
for the Cfl polytope, where N is the number of facilities in the instance. This
result can be shown to imply that the Ω(N)-level SA relaxation for Cfl, which
is obtained from any starting LP of size 2o(N) defined on the classic set of vari-
ables, has unbounded gap Ω(N). This settles the open question of [4] whether
there are LP relaxations upon which the application of lift-and-project methods
captures the strength of preprocessing steps for Cfl. This result establishes for
the first time such a trade-off for a SA procedure that is independent of the
starting relaxation K.

1.4 The strength of generalized configuration linear programs for
capacitated versions of the facility location problem

In the relevant part of this thesis we introduce and study the family of proper
relaxations which are configuration-like linear programs. The so-called Configu-
ration LP was used by Bansal and Sviridenko [9] for the Santa Claus problem
and has yielded valuable insights, mostly for resource allocation and scheduling
problems (e.g., [31]). The analogue of the Configuration LP for facility location
already exists, it is the star relaxation (see, e.g., [16]). In a star relaxation every
variable corresponds to a star, i.e., a facility f and a set of clients assigned to
f. The natural star relaxation for Cfl and Lbfl is equivalent to the standard
LPs so it has an unbounded integrality gap. We generalize the idea of a star
by introducing what we call classes. A class consists of a set with an arbitrary
number of facilities and clients together with an assignment of each client to a
facility in the set. The definition of a class can thus vary from simple, “local” as-
signments of clients to a single facility, to “global” snapshots of the instance that
express the assignment of clients to a large set of facilities. A proper relaxation



for an instance is defined by a collection C of classes and a decision variable for
every class. We allow great freedom in defining C; the only requirement is that
the resulting formulation is symmetric and valid. The complexity α of a proper
relaxation is the maximum fraction of the available facilities that are contained
in a class of C. Proper LPs are stronger than the standard relaxation. One can
easily construct infinite families of instances where, by increasing the complexity
in a proper relaxation, one cuts off more and more fractional solutions. We char-
acterize the behavior of proper relaxations for Cfl and Lbfl through a sharp
threshold result: anything less than maximum complexity results in a gap that
is not bounded by any constant, while there are proper relaxations of maximum
complexity with a gap of 1.

1.5 Publications

The publications that resulted from the work presented in this thesis include the
following: [20] contains the results on the SA hierarchy, the flow-cover inequalities
and the proper relaxations. The results regarding the LS hierarchy combined
with the results of [19] and [20] were published in [21]. The results regarding the
Extended Formulations are contained in [18].

2 Preliminaries on Extended Formulations

Given a polyhedron K(x, y) = {(x, y) ∈ Rd ×Rdy | Ax+By ≤ b} the projection
to the x-space is defined as {x ∈ Rd | ∃y ∈ Rdy : Ax + By ≤ b}, denoted as
projx(K(x, y)). An extended formulation of a polyhedron P (x) ⊆ Rd is a linear
system K(x, y) = {(x, y) ∈ Rd×Rdy | Ax+By ≤ b} such that projx(K(x, y)) =
P (x). The size of a polyhedron P (x) is the minimum number of inequalities in
its halfspace description. The extension complexity of P (x) is the minimum size
of an extended formulation of P (x).

We define now ρ-approximate formulations as in [10]. Given a combinatorial
optimization problem T (S, f), a linear encoding of T is a pair (L,O) where
L ⊆ {0, 1}∗ is the set of encodings of feasible solutions to the problem andO ⊂ R∗
is the set of encodings of the admissible objective functions. An instance of the
linear encoding is a pair (d,w) where d is a positive integer defining the dimension
of the instance and w ⊆ O∩Rd is the set of admissible cost functions for instances
of dimension d. Solving the instance (d,w) means finding x ∈ L ∩ {0, 1}d such
that wTx is either maximum or minimum, according to the type of problem
T. Let P = conv({x ∈ {0, 1}d | x ∈ L}) be the corresponding 0-1 polytope
of dimension d. Given a linear encoding (L,O) of a maximization problem, the
corresponding polytope P, and ρ ≥ 1, a ρ-approximate extended formulation of
P is an extended relaxation Ax+By ≤ b of P with x ∈ Rd, y ∈ Rdy such that

max{wTx | Ax+By ≤ b} ≥max{wTx | x ∈ P} for all w ∈ Rd and

max{wTx | Ax+By ≤ b} ≤ρmax{wTx | x ∈ P} for all w ∈ O ∩ Rd.



For a minimization problem, we require

min{wTx | Ax+By ≤ b} ≤min{wTx | x ∈ P} for all w ∈ Rd and

min{wTx | Ax+By ≤ b} ≥ρ−1 min{wTx | x ∈ P} for all w ∈ O ∩ Rd.

The ρ-approximate extension complexity of 0-1 integer polytope P (x) ⊆
[0, 1]d is the minimum size of a ρ-approximate extended formulation of P.

We turn now to define a generic extended formulations that will play a central
role.

Definition 1. Given a 0-1 integer polytope P (x) ⊆ [0, 1]d, a product formula-

tion D(z) of P (x) is an extended formulation D(z) of P (x), where z ∈ R2d−1

and for every nonempty subset E ⊆ {x1, x2, . . . , xd} of the original variables, we
have a variable zE , (where z{xi} denotes xi, i = 1, . . . , d). For any feasible inte-

ger solution xs ∈ P (x) ∩ {0, 1}d the vector zs, whose components are defined as
zsE = 1 iff all variables in E have value 1 in xs and zsE = 0 otherwise, is feasible
for any product formulation D(z) of P (x). We will refer to zs as the encoding
of the feasible integer solution xs in the product variables.

Note that the lifted polytope obtained from some specific linear relaxation of
the 0-1 polytope P (x), at any level of the SA hierarchy, after linearization and
before projection to the original variables, is a (mixed) product relaxation.

3 The expressive power of product relaxations

In this section we show the following. For every 0-1 polytope P (x) and every
(approximate) extended formulation Q(x, y) = {(x, y) ∈ Rdx ×Rdy | Ax+By ≤
b} of P (x) there is a product formulation TQ which has the size of Q(x, y) and
is at least as strong in terms of approximability. Similarly, we show that there is
a distributional formulation RQ of the same as Q(x, y) and at least as strong.

A substitution T for the product space is a linear map of the form y = Tz
where T is a dy × (2dx − 1) matrix and z is a 2dx − 1 dimensional vector having
a coordinate zE for each nonempty set E of the form {xi | i ∈ S ⊆ 2{1,...,dx}}.
For any substitution T, the translation of Q(x, y), denoted TQ, the formulation
resulting by substituting T(i)z, for yi, i = 1, ..., dy. Here T(i) denotes the ith
row of T. We require that TQ is a product formulation (see Definition 1) and
we say that we have a translation of Q to product formulations (recall that
the original variables xi coincide with the variables z{xi}). Observe that the
number of inequalities of TQ is the same as in Q(x, y). The translation may
heighten exponentially the dimension, but, since our methodology will give lower
bounds on the size of the product formulations, those bounds apply to the size
of Q(x, y) as well. A substitution T for the distributional space and a translation
to distributional formulations is defined similarly.

Theorem 1. Given a 0-1 polytope P (x) ⊆ [0, 1]dx , for every polytope Q(x, y)
such that P (x) ⊆ projx(Q(x, y)) there is a translation TQ to product formulations
such that P (x) ⊆ projx(TQ) ⊆ projx(Q(x, y)).



Proof. We shall give a substitution T for the variables y ∈ Rdy of Q(x, y) so
that the theorem holds. Let g(x) be a section of Q(x, y) (recall that a section
associates every feasible 0-1 vector x of P (x) to a specific y such that (x, y) ∈
Q(x, y)). We denote by (p, 1) ∈ Rn+1 the vector resulting from p ∈ Rn by
appending the scalar 1 as an extra coordinate.

Observe that a product variable zE behaves, as far as the encondings zs of so-
lutions xs ∈ P (x)∩{0, 1}dx to product variables are concerned, like the monomial∏

xi∈E xi would. Those monomials plus the constant 1 form the Fourier basis.
Likewise we can see a variable yi, as far as the encondings xs, ys of solutions
xs ∈ P (x) ∩ {0, 1}dx are concerned, as a boolean function yi(x) : {0, 1}dx → R
such that yi(x

s) = ysi . By basic functional analysis (see, e.g.,[17]), we have
that every boolean function yi(x) has a unique Fourier representation yi(x) =∑
E⊆{xi|i=1,...,dx} a

yi

E
∏

xi∈E xi. The intuition is that we will use the encodings zs

to product variables to simulate the encodings ys. So we define the substitution
Ti for a variable yi as follows:

yi =
∑

E⊆{xi|i=1,...,dx}

ayi

E zE (1)

In the above expression we assume, for notational convenience that, z∅ = 1.
Recall that product variables are defined for nonempty sets.

Obviously projx(TQ) ⊆ projx(Q(x, y)): from any feasible solution (x0, z0) of
TQ we can derive a feasible solution (x0, y0) of Q(x, y) by setting y0 equal to
Tz0.

We will now show that P (x) ⊆ projx(TQ) or, more specifically, that the
encodings zs of solutions to product variables are feasible for TQ as required
by the definition of product relaxations. Observe that by letting the z vector
take the value zs for some s ∈ P ∩ {0, 1}dx , by (1) we get that the quantities
involved in the inequalities of TQ are the exact same quantities involved in the
corresponding inequalities of Q(x, y) for (x, y) = (xs, ys). By definition (xs, ys)
is feasible for Q(x, y) and thus zs is feasible for TQ.

Corollary 1. A lower bound b on the size of any product relaxation D which
is a ρ-approximate extended formulation of the 0-1 polytope P (x), for ρ ≥ 1,
implies a lower bound b on the size of any ρ-approximate extended formulation
Q(x, y) of P (x).

4 Conclusion

In the context of this thesis we exposed the limitations of linear programming
methods for providing satisfactory approximations to assignments problem with
restrictions such as capacities. In particular we showed that the unboundedness
of the integrality gap of Cfl or Lbfl relaxations persists even after applying the
tightenings of the LS and SA hierarchies. We did so by proving the feasibility of
a bad fractional solution for an asymptotically tight number of levels. We also



proved that the submodular inequalities do not reduce the integrality gap to con-
stant. Then, while turning our attention to the more general model of extended
formulations, we devised a methodology for lower bounding the extension com-
plexity which also serves as a characterization of the extension complexity. We
applied our method to derive tight bounds on the size of mixed product relax-
ations which result also implies tight SA gaps regardless of the initial relaxation.
Lastly, we proved similar negative results for families of proper relaxations that
capture general configuration LPs. The obtained results answered a number of
interesting open questions and conjectures from the relevant literature.

In the recent work of An et al. [5] the first constant factor LP-based ap-
proximation algorithm for Cfl was given. However, the proposed relaxation is
exponential in size and, according to the authors, it is not known to be sep-
arable in polynomial time. A natural question that arises is whether there is
a polynomially-sized relaxation achieving a constant integrality gap. An inter-
esting direction is that of determining the minimum size of an approximate
extended formulation of the Cfl polytope, which our results arguably suggest
to be exponential. We leave this as an open problem.

Regarding our lower bounding methodology for extended formulations, the
proof of our result for mixed product relaxations for Cfl made use of a core
whose underlying hypergraph is actually a graph and moreover a clique. To gen-
eralize this result to product formulations or distributional formulations, or to
prove bounds on the extension complexity of other polytopes, we believe that the
power of general hypergraphs needs to be exploited. Observe that our method-
ology requires only the existence of a suitable core, and thus, one could possibly
employ probabilistic arguments to prove the existence of suitable hypergraphs
of high chromatic number.

In the case of mixed integer polytopes, we leave as an open problem whether
the mixed product relaxations are strong enough to simulate any extended for-
mulation, as is the case for product relaxations and 0-1 polytopes.

We also believe that it would be interesting to revisit polytopes, whose ex-
tension complexity has been shown to be large, and provide independent proofs
using our method, ideally by improving on the known bounds. Moreover, as
we showed for Cfl using product or distributional formulations one can provide
lower bounds as well and this can be of help in settling the extension complexity.
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6. Sanjeev Arora, Béla Bollobás, László Lovász, and Iannis Tourlakis. Proving inte-
grality gaps without knowing the linear program. Theory of Computing, 2(1):19–51,
2006.

7. Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting
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